
TRIPPER: Rule learning using taxonomies
Flavian Vasile, Adrian Silvescu, Dae-Ki Kang, Vasant Honavar

Artificial Intelligence Research Laboratory,
Department of Computer Science, Iowa State University, Ames, IA 50011 USA
{flavian, silvescu, dkkang, honavar}@cs.iastate.edu

Abstract. In many application domains, there is a need for learning algorithms
that generate accurate as well as comprehensible classifiers. In this paper, we
present TRIPPER - a rule induction algorithm that extends RIPPER, a widely
used rule-learning algorithm. TRIPPER exploits knowledge in the form of tax-
onomies over the values of features used to describe data. We compare the per-
formance of TRIPPER with that of RIPPER on benchmark datasets from the
Reuters 21578 corpus using WordNet (a human-generated taxonomy) to guide
rule induction by TRIPPER. Our experiments show that the rules generated by
TRIPPER are generally more comprehensible and compact and in the large ma-
jority of cases at least as accurate as those generated by RIPPER.

1. Introduction

Knowledge discovery aims at constructing predictive models from data that are both
accurate and comprehensible. Use of prior knowledge in the form of taxonomies over
attribute values offers an attractive approach to this problem.

Several authors have explored the use of taxonomies defined over attribute values
to guide learning. Zhang and Honavar developed a Decision Tree [8] and a Naive
Bayes [9] learning algorithm that exploit user-supplied feature value taxonomies.
Kang et al [2] introduced WTL, Word Taxonomy Learner for automatically deriving
taxonomies from data and a Word Taxonomy-guided Naive Bayes (WTNBL-MN)
algorithm for document classification. Michalski [7] has proposed a general frame-
work of attributional calculus that can be seen as an alternative way of representing
rules containing abstractions. Additional references to related work can be found in
[9,11]. Against this background, we present a rule induction method that exploits
user-supplied knowledge in the form of attribute value taxonomies to generate rules at
higher levels of abstraction, named TRIPPER (Taxonomical RIPPER). We report
results of experiments that demonstrate the promise of the proposed approach on a
widely used benchmark data set (the Reuters text classification data set [10]).

2. Method

RIPPER (Repeated Incremental Pruning to Produce Error Reduction), was proposed
by Cohen [1]. It consists of two main stages: the first stage constructs an initial ruleset
using a rule induction algorithm called IREP* [4]; the second stage further optimizes
the ruleset initially obtained. These stages are repeated for k times. IREP*[1] is called
inside RIPPER-k for k times, and at each iteration, the current dataset is randomly
partitioned in two subsets: a growing set, that usually consists of 2/3 of the examples
and a pruning set, consisting in the remaining 1/3. These subsets are used for two
different purposes: the growing set is used for the initial rule construction (the rule
growth phase) and the pruning set is used for the pruning (the rule pruning phase).
IREP* uses MDL[5] as a criterion for stopping the process.

The rule growth phase: The initial form of a rule is just a head (the class value)
and an empty antecedent. At each step, the best condition based on its information
gain is added to the antecedent. The stopping criterion for adding conditions is either
obtaining an empty set of positive instances that are not covered or not being able to
improve the information gain score.

The rule pruning phase: Pruning is an attempt to prevent the rules from being too
specific. Pruning is done accordingly to a scoring metric denoted by v*.

IREP* chooses the candidate literals for pruning based on a score which is applied
to all the prefixes of the antecedent of the rule on the pruning data. The score is de-
fined as:

np

np
prunenefpruneposrulev

+
−=),,(* (1)

where p / n denote the total number of positive / negative instances covered by the
rule. The prefix with the highest v* score becomes the antecedent of the final rule.
 Before introducing TRIPPER, it is helpful to formally define a taxonomy:
 Taxonomy: Let S = {v1, v2, ... vn} be a set of feature values. Let T be a directed
tree where children(i) denotes the set of nodes that have incoming arrows to the node
i. A node i is called leaf if it has no children. A taxonomy Tax(T,S) is a mapping
which assigns to a node i of the tree T a subset S’ of S with the following properties:

U
)(

))(,())(,(
ichildrenj

jSTTaxiSTTax
∈

= (2)

STLeaves =)((3)

 1. TRIPPER(G) - improvement at rule growth phase: Introducing the taxonomi-
cal knowledge at the rule-growth phase is a straightforward process we call feature
space augmentation. The augmentation process takes all the interior nodes of the
attribute value taxonomy and adds them to the set of candidate literals used for the
growth phase.

2. TRIPPER(G+P) - improvement at rule pruning phase: A more general ver-
sion of feature selection than pruning is abstraction: in the case of abstraction, instead
of casting the problem as a matter of preserving or discarding a feature, we are able to
choose from a whole range of levels of specificity for the feature under consideration.

Fig. 1. Taxonomy over a set of nouns. Pruning and abstraction on a taxonomy.

 The effect on the resulting rule can be observed in the following example:
[original rule] - (rate = t) and (bank = t) and (dollar = t) => is_interest
[pruned rule] - (rate = t) and (bank =t) and (any_concept = t) => is_interest
[abstracted rule] - (rate = t) and (bank = t) and (monetary_unit= t) => is_interest

Example 1: Variants of a classification rule for the class “interest”

 The algorithm Prune_by_abstraction (fig.2.) uses exactly this idea to incremen-
tally search for useful abstractions for the literals in the suffix to be pruned according
to the v* score of the rule prefixes.

Prune-by-abstraction(Rule,PruneData)

PrunedRule=PruneRule(Rule,PruneData)
Score=v*(PrunedRule,PruneData)
PrunePos=GePrunePos(PrunedRule), Level=0
While(improvement)
 Improvement=false, Increase(Level)
 For j:=PrunePos to size(Rule)
 AbstrRule=PrunedRule
 For i:=j to size(Rule)
 Literal=Rule(i)
 AbstrRule:=AbstrRule^Abstract(Literal,
 Level)
 If(v*(AbstrRule, PruneData)>Score)
 Update(Score)
 WinRule=AbstrRule, Improvement=true
Return WinRule

Fig. 2. Prune by Abstraction pseudocode

3. Experiments

Experimental setup: Experiments were performed on the benchmark dataset Reuters
21578 using the ModApte split [10] of training and testing data. Following the ex-
perimental setup used in [6], only the ten biggest classes in the dataset were used. As
in [6], only the 300 best features were used as inputs to the classifier. The experiments
compare RIPPER with TRIPPER (G+P) . The text-specific taxonomies used for our
experiments on the Reuters dataset comes from WordNet[3], using only the hy-
pernimy relation that stands for “isa” relation between concepts.
Results: Our experiments show that: (a) TRIPPER (G+P) outperforms, or matches
RIPPER in terms of break-even point on the Reuters dataset (Table 3-1) in a majority
(8 out of 10) of classes; (b) TRIPPER generates more abstract (and often more com-
prehensible) rules than RIPPER: Table 3-2 shows some of the abstract literals discov-
ered to be important for 3 of the 10 classes. Furthermore, the rules generated by
TRIPPER(G+P) are often more concise than those generated by RIPPER (results not
shown) [11].

Table 3-1. Comparison of performance (break even point) of TRIPPER and RIPPER using WN

Class Acq Corn Crud Earn Grn. Inter Mon Ship Trd. Wht.

Trip. 86.3 85.7 82.5 95.1 87.9 71.5 70.4 80.9 58.9 84.5

Ripp. 85.3 83.9 79.3 94 90.6 58.7 65.3 73 68.3 83

 Table 3-2. Abstract literals from WordNet

Class subject Abstract literals
Crude Oil assets, chemical_phenomenon, chemical_element, finan-

cial_gain, macromolecule, magnitude_relation, process,
worker

Money,
Foreign
Exchange

artifact, assets, businessperson, document, institution, loca-
tion, medium_of_exchange, measure, organization, signal,
social_ event, solid

Trade assembly, assets, calendar_month, change_of_magnitude,
mass_unit, outgo, signal

 The usefulness of abstraction is confirmed by the prevalence of abstract literals in
almost all the rules of every ruleset. Both of the phases (growth and pruning) gener-
ated improvements (results not shown) [11], lending empirical support for the idea
that both of the extensions are useful.

4. Conclusions

TRIPPER is a taxonomy-based extension of the popular rule-induction algorithm
RIPPER [1]. The key ingredients of TRIPPER are: the use of an augmented set of

features based on taxonomies defined over values of the original features (WordNet in
the case of text classification) in the growth phase and the replacement of pruning, as
an overfitting avoidance method, with the more general method of abstraction guided
by a taxonomy over the features. The experiments briefly summarized in this paper
show that TRIPPER generally outperforms RIPPER on the Reuters text classification
task in terms of break-even points, while generating potentially more comprehensible
rule sets than RIPPER. It is worth noting that on the Reuters dataset, TRIPPER
slightly outperforms WTNBL [2] in terms of break-even points on 7 out of 10 classes.
 The additional computation cost of TRIPPER is small when compared with
RIPPER, consisting in an additional multiplicative factor that represents the height of
the largest taxonomy, which in the average case scales logarithmically with the num-
ber of feature values.

References

1. Cohen, W. W.: Fast effective rule induction. Proceedings of International Conference on
Machine Learning, Lake Tahoe, CA. (1995)

2. Kang, D.-K., Silvescu, A., Zhang, J., Honavar, V.: Generation of Attribute Value Taxono-
mies from Data for Data-Driven Construction of Accurate and Compact Classifiers, Pro-
ceedings of the 4th IEEE International Conference on Data Mining, Brighton, UK. (2004)

3. Fellbaum, C: WordNet, An Electronic Lexical Database. The MIT Press. (1998)
4. Fürnkranz, J., Widmer, G: Incremental reduced error pruning. Proceedings of International

Conference on Machine Learning. New Brunswick, NJ. (1994)
5. Quinlan, J. R.: MDL and categorical theories. Proceedings of International Conference on

Machine Learning, Lake Tahoe, CA. (1995)
6. McCallum, A., Nigam, K.: A comparison of event models for naive bayes text classification.

In: AAAI-98 Workshop on Learning for Text Categorization. (1998) 3-5.
7. Michalski, R. S.: Attributional Calculus: A Logic and Representation Language for Natural

Induction, Reports of the Machine Learning and Inference Laboratory, MLI 04-2, George
Mason University, Fairfax, VA. (2004)

8. Zhang, J., Honavar, V.: Learning decision tree classifiers from attribute value taxonomies
and partially specified data. Proceedings of International Conference on Machine Learning,
Washington, DC. (2003)

9. Zhang, J., Honavar, V.: AVT-NBL 2004: An algorithm for learning compact and accurate
naive bayes classifiers from feature value taxonomies and data, Proceedings of the Fourth
IEEE International Conference on Data Mining, Brighton, UK. (2004)

10. Apte, C., Damerau, F., Weiss Sholom, .M.: Towards language independent automated
learning of text categorization models. SIGIR '94, Springer-Verlag New York, Inc. (1994)
23-30.

11. Vasile, F, Silvescu, A, Kang, D.-K., Honavar V.: TRIPPER: Rule learning using taxono-
mies, Tehnical Report ISU-CS-TR, Department of Computer Science, Iowa State Univer-
sity, Jan.2006. (Publicly available at http://www.cs.iastate.edu/~flavian/tripper_long.pdf)

