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Abstract— In this paper, we propose a “bag of system
calls” representation for intrusion detection in system call
sequences and describe misuse and anomaly detection re-
sults with standard machine learning techniques on Univer-
sity of New Mexico (UNM) and MIT Lincoln Lab (MIT
LL) system call sequences with the proposed representa-
tion. With the feature representation as input, we compare
the performance of several machine learning techniques for
misuse detection and show experimental results on anomaly
detection. The results show that standard machine learning
and clustering techniques on simple “bag of system calls”
representation of system call sequences is effective and of-
ten performs better than those approaches that use foreign
contiguous subsequences in detecting intrusive behaviors of
compromised processes.

I. Introduction

Detection of attempts to compromise the integrity, confi-
dentiality, or availability of computing and communication
networks is an extremely challenging problem [1]. Most
current approaches to the design of intrusion detection
systems (IDS) are based on the premise that the actions
used in an attempted intrusion can be differentiated from
the actions executed by users or processes during the nor-
mal operation of the computing and communication net-
works [2]. An effective IDS logs actions executed by users or
processes for investigation, alerts the system administrator
when the monitored activities are indicative of attempted
intrusion, and, if appropriate, takes corrective measures
e.g., expelling the intruder.

Intrusion detection and prevention generally refers to a
broad range of strategies for defending against malicious
attacks. Intrusion detection can be categorized into mis-
use detection and anomaly detection. Misuse typically is
a known attack, e.g., a hacker attempting to break into
an email server in a way that IDS has already trained. A
misuse detection system tries to model normal and abnor-
mal behavior from known attacks. It works by comparing
network traffic, system call sequences, or other features of
known attack patterns. An anomaly is something out of
the ordinary, e.g., abnormal network traffic which is ac-
tually caused by unknown attacks. An anomaly detection
system models normal behavior and identifies a behavior as
abnormal (or anomalous) if it is sufficiently different from
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known normal behaviors.
IDS can be classified into those that focus on modeling

the behavior of users and those that focus on modeling the
behavior of processes [3]. System call data are one of the
most common types of data used to model the behavior of
processes. Such data can be collected by logging the system
calls using operating system utilities e.g. Linux strace or
Solaris Basic Security Module (BSM).

There has been a great deal of research on how to design
and implement intrusion detection systems. For example,
Mukherjee et al [4] used a combination of host monitors
and network monitors with a centralized director for sus-
picious system activities in the distributed intrusion detec-
tion system (DIDS) project. Because it is difficult to man-
ually specify activities that signal intrusive behavior, there
has been much work on adaptive or machine learning or
data mining approaches for intrusion detection. Forrest et
al [5] worked on the Computer Immunology project and ex-
plored approaches inspired by the activities of the immune
systems of animals for detecting and defending against in-
trusions. Subsequently, several groups have explored data
mining approaches for intrusion detection [6], [7], [8].

In most IDS that model the behavior of processes, in-
trusions are detected by observing fixed-length, contiguous
subsequences of system calls. For example, in anomaly de-
tection, subsequences of input traces are matched against
normal sequences in database so that foreign sequences are
detected. [5], [9] One potential drawback of this approach
is that the size of the database that contains fixed-length
contiguous subsequences increases exponentially with the
length of the subsequences. For example, if the number
of system calls is 200 and the length of the subsequences
is 6, the maximum size of the database is theoretically
2006 = 64 × 1012 words. In practice, only normal subse-
quences are stored, so actual database size is smaller, but
still considerably bigger than the hypothesis size generated
by the approach presented here.

In this paper, we explore an alternative representation
of system call traces for intrusion detection. We use a
bag of system calls representation of system call sequences
and consider intrusion detection of system call sequence
as a classification problem on a bag of system calls ob-
tained from the system call sequences. With those prob-
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lem setting, we constructed and evaluated decision tree
learner [10], Naive Bayes learner [11], rule learner [12], sup-
port vector machines (SVM) [13], [14], and logistic regres-
sion model (with a ridge estimator) [15] using bag of system
calls representation of system calls. We also explored ap-
plication of the representation to anomaly detection tasks
using a one class Naive Bayes classifier as well as K-means
clustering [16] using the same representation of system call
sequences. Bag of words model is already popular in text
classification and categorization area [17], and our motiva-
tion is to investigate the usefulness of the model in intrusion
detection tasks.

The results show that the proposed approach for misuse
detection yields comparable or sometimes better perfor-
mance than the methods previously reported in the litera-
ture in terms of detection rate and false positive over widely
used benchmark data sets such as University of New Mex-
ico (UNM) and MIT Lincoln Lab (MIT LL) system call
sequences.

The rest of the paper is organized as follows. Section
2 describes two different representations of system call se-
quences. Section 3 describes the benchmark data sets used
in our study. Section 4 describes the experimental setup
and results. Section 5 concludes with a summary and dis-
cussion.

II. Alternative Representations of System Call
Sequences

We describe two feature representations of system call
sequences that intrusion detection algorithms deal with.
The first one is a contiguous subsequence with fixed length
k from original input traces, and the second is bag of system
calls, which is our approach.

One of the main questions in sequence-based intrusion
detection is how to define “intrusion” in an input sequence.
Most intrusion detection algorithms such as STIDE [18] re-
gard that intrusion is related with fixed-length subsequence
that only happens in intrusive traces.

In our approach, we convert the input sequence to bag of
system calls. Thus, the ordering information between sys-
tem calls is lost and only the frequency of each system call is
preserved for each input sequence. Intrusion is represented
according to the machine learning algorithm applied.

Formally, the intrusion detection problem on system call
or command sequences can be defined as follows:

Let Σ = {s1, s2, s3, . . . , sm} be a set of system calls where
m = |Σ| is the number of system calls. Data set D can be
defined as a set of labeled sequences {< Zi, ci > |Zi ∈
Σ∗, ci ∈ {0, 1}} where Zi is an input sequence and ci is a
corresponding class label denoting 0 for “normal” label and
1 for “intrusion” label. Given the data set D, the goal of
the learning algorithm is to find a classifier h : Σ∗ → {0, 1}
that maximizes given criteria. Widely accepted criteria
include accuracy, detection rate and false positive rate.

Because it is difficult to deal with sequences directly,
each sequence Z ∈ Σ∗ is mapped into a finite dimensional
feature vector by a feature representation Φ : Σ∗ → X.
Thus, the classifier is defined as h : X → {0,1} for data
set {< Xj , cj > |X ∈ X, cj ∈ {0,1}}.

A. Contiguous Foreign Subsequences

In this approach, a feature is defined as Xj =
x1x2x3. . .xk, a substring of Zi, where x1≤l≤k∈Σ and k is a
constant. The maximum number of distinct features is |Σ|l
and each feature Xj is assigned a class label ci according
to the original sequence Zi.

STIDE uses sliding windows with length k over an orig-
inal input trace to generate fixed-length substrings as fea-
tures and constructs a database of the features in the train-
ing stage, and decides a test sequence is anomalous if the
number of mismatches in the user-specified locality frame
(locality frame count), which is composed of adjacent fea-
tures in the frame, is more than the user-specified thresh-
old. Empirically, it is widely accepted that, for effective
intrusion detection, the minimal value of k is six [19].

B. Bag of System Calls

“Bag of system calls” representation is an integer-
frequency based method. In our approach, a feature is
defined as an ordered list Xi = 〈c1, c2, c3, . . ., cm〉 where
m = |Σ| and cj is the number of occurrence of system call
sj in the input sequence Zi.

Thus, the original trace is converted to a bag of system
calls, and the ordering information of adjacent system calls
in the input sequence is lost and only the frequency of each
system call in the bag is preserved. Intrusion in this feature
representation is defined according to frequency count of
system calls.

One of the main issues in this paper is whether the bag
of system calls representation, which is already popular in
text classification and categorization, can effectively repre-
sent intrusion. We will show experimental results over Uni-
versity of New Mexico (UNM) and Massachusetts Institute
of Technology Lincoln Lab (MIT LL) data in later sections
for this issue. It will be shown that frequency information is
effective enough to discriminate between normal sequences
and abnormal sequences. As an example for this, figure 1
shows a histogram of the average frequency of selected sys-
tem calls in normal sequences and abnormal sequences in
UNM denial of service (DoS) trace data set (also known as
stide data set). We found a similar phenomenon for other
data sets including MIT LL data sets.

III. Data Sets

For experiments, we choose publicly available system call
sequences from UNM and MIT LL data.
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Fig. 1. Average frequency of selected system calls in normal traces
and intrusion traces in UNM denial of service trace data set

A. UNM System System Call Sequences

The University of New Mexico (UNM) provides a number
of system call data sets. Each data set corresponds to
a specific attack or exploit. The data sets we tested are
“live lpr”, “live lpr MIT”, “synthetic sendmail”, “synthetic
sendmail CERT”, and “denial of service”(DoS).

In UNM system call traces, each trace is an output of one
program. Sometimes, one trace has multiple processes. In
such cases, we have made one sequence per process in the
original trace. Thus, multiple sequences of system calls
are made from one trace if the input trace has multiple
processes in it. However, most traces have only one process
and usually one sequence is created for each trace. Table
I shows the number of original traces and the number of
sequences for each data set.

There are three different mapping files in UNM call
traces. One is Sun (synthetic sendmail, synthetic sendmail
CERT, synthetic lpr, live lpr and live lpr.MIT) , another is
Linux (live named, login, ps, inet and DoS), and the third
is new Linux (synthetic ftp and xlock). There are old and
new Sun mapping files but only one system call is added to
the new mapping file so both can be easily converted. The
Sun mapping file has a few duplicate system calls (e.g. ‘fs-
tat’, ‘stat’, etc.), but we changed them so that each system
call is unique.

B. MIT Lincoln Lab System Call Sequences

We used data sets provided by the MIT Lincoln Lab [20].
The fourth week (starting at 6/22/98) training data set of
year 1998 is used for the experiments in this paper. This
training data is comprised of a detailed set of data files rep-
resenting the state of a particular system over eight-hour
daytime periods over the course of the week beginning on
6/22/98. Of interest to this paper is the omnibus data file
containing all system calls made during the collection pe-
riod and the network traffic analysis file (distilled from raw
network data) that identifies inbound network connection
attempts.

We explain the issues with cross-indexing the data files.
MIT Lincoln Labs datasets include omnibus files containing
all system call traces. For each omnibus file, there is with
a separate, network traffic analysis data file that indicates
inbound network connections to the system. Attack at-
tempts are logged with the network data, so labeling of the
training data requires cross-indexing this file with the sys-
tem call trace file. The system call trace file identifies the
source of each call using the process ID. Therefore, cross-
indexing requires tracking the argument to the ‘exec’ sys-
tem call identifying the binary to be executed. Addition-
ally, the timestamps from the network traffic analyzer do
not exactly correspond to the execution timestamps from
the operating system kernel. A tolerance of one second
was arbitrarily chosen and seems to permit the matching
of a large majority of connection attempts with their cor-
responding server processes run on the target system.

All processes detected that do not correspond to some
network connection attempt identified in the trace are re-
moved from consideration (since they cannot be classified),
as are all calls attributed to a process ID for which an ‘exec’
system call is not found. The resulting data are available
at http://www.cs.iastate.edu/~dkkang/IDS_Bag/.

IV. Experiments and Results

We use different approaches for three different types of
intrusion detection experiments. The approaches will be
explained at each respective section.

The data sets we have tested are “live lpr”, “live lpr
MIT”, “synthetic sendmail”, “synthetic sendmail CERT”,
and “denial of service attack” of UNM, and the fourth week
training data set of year 1998 in MIT LL.

For the evaluation of classifiers generated in the exper-
iment, 10-fold cross validation is used, so no training in-
formation is reused in the test stage. In ‘x’-fold cross-
validation, the data set is divided into x subsets of approx-
imately equal size. One of the subsets is picked for testing
and the rest subsets are used for training. In other words,
a classifier is generated from ‘x-1’ subsets and the classifier
is tested over the rest subset. This routine is applied for
each of x different subsets, and then accuracy, detection
rate and false positive rate are averaged respectively over
each of x different subsets tested. This is to ensure that no
information used for classifier generation is reused as test
data.

Accuracy, detection rate, and false positive rate are de-
fined as follows:

accuracy =
# of true positives + # of true negatives

# of input sequences

detection rate =
# of true positives

# of true positives + # of false negatives

false positive rate =
# of false positives

# of true positives + # of false positives
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TABLE I

The number of original traces and generated sequences in UNM data sets

Program # of original traces # of sequences
live lpr (normal) 1232 1232
live lpr (exploit) 1001 1001

live lpr MIT (normal) 2704 2704
live lpr MIT (exploit) 1001 1001

synthetic sendmail (normal) 7 346
synthetic sendmail (exploit) 10 25

synthetic sendmail CERT (normal) 2 294
synthetic sendmail CERT (exploit) 6 34

denial of service (normal) 13726 13726
denial of service (exploit) 1 105

A. Experimental Results on Misuse Detection

For misuse detection, we use several machine learning
techniques. We tested Naive Bayes Learner of Multino-
mial Event Model [11], C4.5 Decision Tree Learner [10],
RIPPER rule learner [12], SVM [13], and Logistic Regres-
sion Model [15]. For SVM, Sequential Minimal Optimiza-
tion (SMO) [14] with a linear kernel was used for training,
and for logistic regression, a multinomial logistic regression
model with a ridge estimator was used. Table II shows the
accuracy, detection rate, and false positive rate of the data
sets we tested. The detection rate is a fraction of the in-
trusions identified and the false positive rate is a fraction
of normal data mis-identified as intrusion.

The results in table II show that standard machine learn-
ing techniques are effective in misuse detection with sim-
ple bag of system calls representation. For example, with
SMO using a linear kernel, an SVM can perfectly detect
both normal and intrusion sequences in the “UNM live lpr”
data set.

In the MIT LL results in table II, it is interesting that all
machine learning algorithms got the same results on each
day tested. We did not try to detect the type of intrusion
and assign a corresponding score for the intrusion as was
intended in the original evaluation in 1998. Instead we
just tried to detect intrusion. Perhaps, the reason that
all algorithms have the same results for each day is that
the normal sequences and intrusion sequences in the data
set are already highly different. Wednesday data set was
not tested because no intrusions were in the network traffic
analysis file.

One problem which is common in intrusion detection
practice is that data is not quite balanced. For example,
“UNM synthetic sendmail” and “UNM synthetic sendmail
CERT” data sets in the table II are such data sets, and
that’s why their detection rate or false positive rate is not
quite optimal.

Figure 2 shows the Receiver Operating Characteristic
(ROC) Curve of “UNM live lpr” and “UNM synthetic send-
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Fig. 2. ROC Curve of “UNM live lpr” and “UNM synthetic sendmail”
data sets in misuse detection

mail” data sets using C4.5 and Naive Bayes Multinomial
algorithms respectively.

From figure 2(a), we can see that the classifier generated
from “UNM live lpr” data set is very effective because it
has sufficient number of intrusion data for training. The
“UNM live lpr” data set has 183 attributes, 1232 normal
sequences, and 1001 intrusion sequences. From figure 2(b),
standard machine learning techniques have limitations in
this case, because the data sets themselves are small. The
“UNM synthetic sendmail” data set has 182 attributes, 346
normal sequences, and only 25 intrusion sequences, and we
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TABLE II

Percentage of misuse detection based on 10 fold cross-validation

Program Naive Bayes C4.5 RIPPER SVM Logistic
Multinomial Regression

UNM live lpr
accuracy 83.43 99.91 99.91 100.00 99.91
detection rate 100.00 99.80 99.80 100.00 100.00
false positive rate 30.03 0.00 0.00 0.00 0.16
UNM live lpr MIT
accuracy 54.52 99.89 99.86 99.83 99.97
detection rate 100.00 99.90 99.80 99.80 99.90
false positive rate 62.31 0.11 0.11 0.14 0.00
UNM synthetic sendmail
accuracy 20.21 94.87 94.33 95.68 95.41
detection rate 92.00 40.00 48.00 40.00 64.00
false positive rate 84.97 1.15 2.31 0.28 2.31
UNM synthetic sendmail CERT
accuracy 24.39 96.64 95.42 96.03 96.03
detection rate 100.00 85.29 82.35 64.70 82.35
false positive rate 84.35 2.04 3.06 0.34 2.38
UNM denial of service
accuracy 98.70 99.97 99.96 99.98 99.97
detection rate 44.76 99.04 98.09 100.00 99.04
false positive rate 0.88 0.02 0.02 0.01 0.01
MIT LL 1998 4th Week
Monday
accuracy 100.00 100.00 100.00 100.00 100.00
detection rate 100.00 100.00 100.00 100.00 100.00
false positive rate 0.00 0.00 0.00 0.00 0.00
Tuesday
accuracy 99.55 99.55 99.55 99.55 99.55
detection rate 98.60 98.60 98.60 98.60 98.60
false positive rate 0.00 0.00 0.00 0.00 0.00
Thursday
accuracy 99.73 99.73 99.73 99.73 99.73
detection rate 100.00 100.00 100.00 100.00 100.00
false positive rate 0.04 0.04 0.04 0.04 0.04
Friday
accuracy 98.80 98.80 98.80 98.80 98.80
detection rate 89.28 89.28 89.28 89.28 89.28
false positive rate 0.00 0.00 0.00 0.00 0.00

tested the generated classifier with 10 fold cross-validation.
Hence, in some folds, the machine learning algorithm did
not have enough intrusion samples. Machine learning al-
gorithm needs statistically sufficient data for each class to
generate a useful classifier. But when the data is imbal-
anced, it cannot obtain sufficient data to generate a classi-
fier to discriminate the classes effectively.

B. Detecting intrusion from the generated rules

One of the problems in our bag of system calls repre-
sentation is that, with some machine learning algorithms,
the classification cannot be done until the end of the
process [18]. However, with the machine learning algo-
rithms that generate comprehensive hypotheses, we can use
very simple rules to detect a process that has exhibited in-
trusive behavior before it is terminated.

Figure 3 is the decision tree by C4.5 for the “UNM live
lpr” data set.
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fstat

normal (1234.0/2.0)

<= 5

intrusion (999.0)

> 5

Fig. 3. C4.5 decision tree for UNM live lpr

unlink

normal (2669.0/1.0)

<= 2

getuid

> 2

normal (33.0)

<= 1

intrusion (1003.0/3.0)

> 1

Fig. 4. C4.5 decision tree for UNM live lpr MIT

Though this simple rule does not have a perfect detec-
tion rate, it says that “we can guess the input lpr program
trace is an intrusion sequence if the number of occurrences
of ‘fstat’ system calls is more than 5”. Therefore, a simple
counter program that counts the number of certain system
calls can detect intrusion before the process ends. However,
unlike the approach that detects foreign contiguous subse-
quences, the counter program may not detect intrusion just
after foreign subsequences are executed.

Figure 4 is the decision tree produced by C4.5 for “UNM
live lpr MIT” data set. Though both the “UNM live lpr”
data and the “UNM live lpr MIT” data contain intrusion
snapshots by “lprcp” scripts, the generated rule may not
always be the same because of different system environ-
ments.

The reason that this difference in frequency matters in
classification is that the programs compromised by the in-
truder will have more codes (intrusion codes) which will
be executed during the routine execution of the programs,
causing a change in the distribution of system calls. In the
decision trees of figure 3 and 4, it can be seen that intrusion
lies under ‘greater than (>)’ arc. It is because adding in-
trusion codes in the original program increases the counts
of those system calls (‘fstat’, ‘unlink’, and ‘getuid’) in the
decision trees.

C. Experimental Results on Supervised Anomaly Detection

For supervised anomaly detection, we used one class
Naive Bayes algorithm. In one class Naive Bayes, we calcu-
late the probability distribution of the training data instead
of the class label conditional probability distribution. For
test sequences, we calculated symmetric Kullback-Liebler
divergence [21], [22] between the learned distribution and
the distribution of test sequence in bag of system calls
representation. If the divergence is under a user-specified
threshold θ, then the test sequence is considered to be sim-
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0.43)

ilar to the learned distribution.
In figure 5, we show the result of the one class Naive

Bayes algorithm in a bag of system calls representation on
“UNM live lpr” data set.

One class Naive Bayes performs effectively on the “UNM
live lpr” data set, but does not perform effectively on some
of other data sets, especially when the data set is imbal-
anced.

D. Experimental Results on Unsupervised Anomaly Detec-
tion

In unsupervised anomaly detection, the learning algo-
rithm assumes that the input data set is composed of nor-
mal sequences and intrusion sequences, but the sequences
are not explicitly labeled. Therefore, it assumes the data
distribution is a mixture of the distribution of normal seqe-
unces and the intrusion seqeunces. We use k-Means clus-
tering with k set to 2 for clustering normal and intrusion
distributions. We evaluated the clustering based approach
on “UNM live lpr” and “UNM synthetic sendmail” data.
The results are shown in table III.

From the results in the table, k-means clustering is effec-
tive in unsupervised anomaly detection on ‘UNM live lpr’
data but not on ‘UNM synthetic sendmail’ data.

V. Summary and Discussion

In this paper, we have explored the use of a simple bag
of system calls representation of system call sequences for
intrusion detection. We constructed decision tree, Naive
Bayes, decision list, and SVM and Logistic Regression clas-
sifiers for misuse detection. We constructed one class Naive
Bayes algorithm and K-Means clustering for anomaly de-
tection. In addition to the fact that we can use those
standard machine learning methods, the proposed ‘bag of
system calls’ representation has significant computational
advantages over other approaches that have been reported
in the literature.

Results of our experiments using widely used benchmark
data sets - the University of New Mexico (UNM) and MIT
Lincoln Lab (MIT LL) system call sequences show that the
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TABLE III

K-means clustering results of unsupervised anomaly detection experiments in percentage.

Program Accuracy Detection Rate False Positive
UNM live lpr 99.28 100.00 1.29
UNM synthetic sendmail 80.3235 40.00 16.76

performance of the proposed approach in terms of detec-
tion rate and false positive rate is comparable or superior
to that of previously reported data mining approaches to
misuse detection. In particular, as shown in table II, the
proposed methods achieve nearly 100% detection rate with
almost 0% false positive rate on all the data sets studied
with the exception of two synthetic data sets (‘UNM syn-
thetic sendmail’ and ‘UNM synthetic sendmail CERT’). It
is important to note that the reported performance mea-
sures were estimated using 10 fold cross-validation which
ensures no overlap between training data and test data.

A. Discussion

When compared with the widely used fixed-length con-
tiguous subsequence models, the bag of system calls repre-
sentation explored in this paper may seem somewhat sim-
ple. It may be argued that much more sophisticated models
that take into account the identity of the user or perhaps
the order in which the calls were made. But our experi-
ments show that a much simpler approach may be adequate
in many scenarios. The results of experiments described in
this paper show that it is possible to achieve nearly per-
fect detection rates and false positive rates using a data
representation that discards the relationship between sys-
tem call and originating process as well as the sequence
structure of the calls within the traces.

Forrest et. al. [5], [18] showed that it is possible to
achieve accurate anomaly detection using fixed-length con-
tiguous subsequence representation of input data. In their
approach, the detector will find anomalous subsequences
right after they are executed depending on user-specified
thresholds. The proposed ‘bag of system calls representa-
tion has advantages that learning is faster, memory require-
ments are significantly lower, and simple counter program
can discriminate normal sequences and abnormal sequences
very quickly, before the process is terminated.

In these respects, a bag of system call representation is
very suitable for protecting well known attacks and triv-
ially modified attacks for IDS under time and space con-
straints. If the IDS needs to be built in real-time and the
built system must be as light as possible to be able to work
over limited resources, our approach will be a perfect fit
because the generated IDS is simple and powerful to de-
tect well known attacks. However, if the attacker knows
the intrusion detection mechanism, our approach can be
deceived by mimicry attacks [23]. Our future work will be
focused on addressing this problem.

B. Related Work

Warrender, Forrest, and Pearlmutter [18] have presented
several intrusion detection methods based upon system call
trace data. They tested a method that utilizes sliding win-
dows to determine a database of normal sequences to form a
database for testing against test instances. They then used
a similar method to compare windows in the test instances
against the database and classify instances according to a
function of the similarity of these sequences to those in the
normal sequence database. The function requires sequen-
tial analysis of a window of system calls for each call made
by a process. This requires the maintenance of a large
database of normal system call trace sequences.

The same authors have described a rule-based classifica-
tion method that requires alterations to the training data
to learn. This model involves prediction of the next sys-
tem call to be made by a process given some number of
calls made immediately before. This method requires enu-
meration of all unique system call traces within a given
program. This is quite demanding on a learner, especially
in a situation where the datasets are quite large indeed.
Even the space requirements are quite large relative to the
input dataset. Finally, classification time is high for such
methods because (in the worst case) each rule needs to be
checked for each input instance.

Warrender et al. have presented Hidden Markov Model
(HMM) methods for intrusion detection. Although this
method does not require modification of the input dataset,
it does require individual examination of each dataset to
determine the optimal HMM to attempt to learn in each
case. While this requirement does not seem overly demand-
ing, we would prefer a method which allows classification
of multiple input datasets in the same format if possible.
Additionally construction of accurate HMM models can be
quite demanding in terms the amount of training data as
well as computational effort. Warrender, et al. observe
that, for a process that makes S system calls, S states
(and thus 2S2 values) must be computed. Datasets of in-
terest in practice contain large amounts of processes (eight
hours per day worth in the case of the MIT Lincoln Labs
datasets), and each process makes a large number of system
calls throughout its lifetime. Computing even polynomially
many values for each instance becomes a problem at this
scale.

Normalized frequency of audit data was used in SRI
NIDES [24]. In NIDES, probability distribution of long
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term behavior of a program is generated and maintained
as its profile. For detecting the anomalous behavior of the
program, the profile is compared with short term behav-
ior of the program, which is also maintained as probability
distribution, using a statistical test similar to χ2 test. The
behavior of a program is characterized by its audit data
such as file access, CPU usage, etc. We maintain the raw
count of system calls that are sequentially observed from
the program as its profile, but this approach can be ap-
plied to other types of audit data. In some machine learn-
ing algorithms, raw counts are normalized and statistically
compared with new behavior of the program. The Naive
Bayes learning algorithm, which is one of the learning al-
gorithms reported in this study, generates class-conditional
probability distributions and prior distributions of the raw
counts and statistically compares them with new distrib-
ution from the new behavior of the program. Moreover,
as we showed, our profile representation can be used effec-
tively with various machine learning algorithms.

One of the most popular rule induction techniques used
in IDS is Repeated Incremental Pruning to Produce Er-
ror Reduction (RIPPER) rule learning algorithm [12]. Lee
et al. [25] used RIPPER on a set of substrings of length
7 generated by the sliding window from sendmail system
call traces. The generated rules are based on the insight
that intrusion can be captured from the fixed-length sub-
strings. For example, the rule ‘normal: p2 = 104, p7 = 112’
means ‘if p2 is 104 and p7 is 112 then the substring is nor-
mal’. This approach, as in the case of STIDE, employs a
user-supplied threshold to determine if the input trace is
normal or intrusive. We applied RIPPER on a bag of sys-
tem calls representation, and we obtained rules based on
counts such as ‘(count(fcntl) ≥ 1) and (count(rename) ≤ 0)
and (count(read) ≥ 5) → class=intrusion’ where count(X)
returns the number of occurrence of system call X in the
input trace. The rules generated by our method apply to
the entire system call trace (as opposed to fixed length sub-
string of traces). In our case, the relevant thresholds are
learned directly from the training data, thereby avoiding
the necessity of user-supplied thresholds.
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